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Stars, Asteroids, and even the (pseudo-)nuclei of comets, are point-sources of light. In recent times, most observers use CCDs 
to observe these objects, so it might be worthwhile to think about some details of detecting and measuring point sources with a 
CCD. First, this paper discusses the properties of point-sources, and how they can describe them with a small set of numerical 
values, using a Point Spread Function (PSF). Then, the sources of noise in CCD imaging systems are identified. By estimating 
the signal to noise ratio (SNR) of a faint point source for some examples, it is possible to investigate how various parameters 
(like exposure time, telescope aperture, or pixel size) affect the detection of point sources. Finally, the photometric and 
astrometric precision expected when measuring faint point sources  is estimated. 
 
 

Introduction 
 
Modern CCD technology has enabled amateur astronomers 
to succeed in observations that were reserved to 
professional telescopes under dark skies only a few years 
ago. For example, a 0.3m telescope in a backyard 
observatory, equipped with a CCD, can detect stars of 
20mag. However, many instrumental and environmental 
parameters have to be considered when observing faint 
targets. 
 
Properties of Point Sources 
 
In long exposures, point sources of light will be “smeared” 
by the effects of the atmosphere, the telescope optics, 
vibrations of the telescope, and so forth. Assuming that the 
optics are free of aberrations over the field of the CCD, this 
characteristic distribution of light, called the “Point Spread 
Function” (PSF) is the same for all point sources in the 
image. Usually, the PSF can be described by a symmetric 
Gaussian (bell-shaped) distribution (figure 1) [1]: 
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I(x,y) is the intensity at the coordinates (x,y), which can be 
measured form the image. By fitting the PSF to the pixel 
values that make up the image of the object (figure 1), the 
quantities x0, y0, I, σ and B can be found, which 
characterize the point source as follows: 
 
• Position  

The position of the object in the CCD frame can be 
expressed in rectangular coordinates (x0, y0), usually 
along the rows and columns of the CCD. Fitting a PSF 
to the image will allow to calculate the position of the 
object to a fraction of the pixel size. 

 
• Intensity 

The height of the PSF (H) is proportional to the 
magnitude of the object. The total flux of the objects 
corresponds to the integrated volume of the PSF, less 
the background signal (see below). 

 

• Width 
In equation 1, the width of the Gaussian PSF is 
characterized by the quantity σ. In astronomy, the 
width of the PSF is frequently specified by the so-
called “Full Width Half Maximum” (FWHM). As the 
name implies, this is the width of the curve at half its 
height. The FWHM corresponds to approximately 
2.355 × σ. Although a number of factors control the 
FWHM (like focusing, telescope optics, and 
vibrations), it is usually dominated by the seeing. The 
FWHM is the same for all point-sources in the image 
(if optical aberrations can be neglected). Most notably, 
it is independent of the brightness of the object. Bright 
stars appear larger on the image only because the faint 
outer extensions of the PSF are visible. For faint stars, 
these parts drown in the noise and are therefore not 
visible. 

 
• Background 

During the exposure, the CCD not only collects signal 
from the object, but also light from the sky background 
and the thermal signal generated within the detector. 
These signals result in a pedestal (B) on which the PSF 
is based. Ideally, the background signal is the same 
over the whole field for calibrated images. In practice, 
however, it will vary somewhat over the field. 
 

 
 

Figure 1: Image of a star on a CCD (left), and the 
Gaussian PSF fitted to the image data (right). 
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Signal and Noise 
 
As briefly mentioned above, the CCD not only collects light 
from celestial objects, but also some unwanted signals. The 
thermal signal, for example, can be subtracted from the 
image by applying a dark frame calibration, but the noise of 
the thermal signal remains even in the calibrated image. In 
addition to the thermal noise, the readout noise is generated 
in the detector. External sources of noise are the photon 
noise in the signal from the sky background, as well as the 
photon noise in the signal of the object under observation. 
The Poisson noise in a signal (that is: the standard deviation 
σ of the individual measurements from the true signal) can 
be estimated as the square root of the signal, i.e. 
 

  S=σ  (2) 
 
where S is the signal (for example, the thermal signal), and 
σ is the noise level in that signal (in that example, the 
thermal noise). The total noise from the four independent 
noise sources mentioned above add in quadrature to give 
the total noise: 
 

 2222
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where σ is the total noise, σB is the background noise, σs is 
the object noise, σT is the thermal signal, and σR is the 
readout noise. The Signal Noise Ratio (SNR) can be 
calculated from: 
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Where S is the signal from the object, and σ the total noise. 
By combining equations 2 to 4, it is possible to calculate the 
SNR in one pixel: 
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Here, S is the signal from the object collected in the pixel, 
B the signal from the sky background and T the thermal 
signal collected by the pixel, respectively, and σR is the 
readout noise for one pixel. If equation 5 is applied to the 
brightest pixel in the image of the object, the result is the  
Peak SNR for that object. The Peak SNR is important, as 
software (or humans) can detect faint objects only if at least 
the brightest pixel has a SNR over some threshold that is set 
to avoid false detections in the image noise. Usually, a Peak 
SNR of ~3 is considered to be a marginal detection. In other 
words, this would correspond to the limiting magnitude of 
the image. 
 
For unfiltered or broadband images, the dominant source of 
noise is usually the sky background, even under very dark 
skies. With modern, cooled CCDs, the instrumental noise is 
generally less important, and object noise is only significant 
for very bright objects. 
 

 
Figure 2: Growth of Signal, Noise, and Signal to Noise 

Ratio with increasing exposure time. 
 
Figure 2 shows the growth of Signal, Noise, and Signal to 
Noise Ratio (SNR) with increasing exposure time t. Note 
that, in this example, the background signal B is stronger 
than the signal S from the object under observation. The 
background noise is σB, the object noise is σS. The readout 
noise is independent of the exposure time and it is 
therefore not drawn. (For sky-limited exposures, it can 
practically be neglected.) The signal S grows linear with 
increasing exposure time, as do the background signal B 
and the thermal signal T. Fortunately, the background 
noise (σB = √B) and the thermal noise (σT = √T) grow 
slower. Doubling the exposure time will increase all 
signals (S,B,T) by a factor of 2, but the noise levels (σs, σB, 
σT, σ) by a factor of only √2, so the SNR increases by 
2 ÷ √2 = √2. With increasing exposure, the faint object will 
eventually emerge from the noise, even though the 
background signal is always stronger than the signal from 
the object in this example. 
 
Estimating the Signal to Noise Ratio 
 
With a few, mostly very simple calculations, it is possible 
to estimate the Signal to Noise Ratio that can be expected 
for a stellar object of known magnitude with a certain 
equipment. In this chapter, one example is described in 
some detail. Further examples in the following chapters 
will be used to compare various telescope setups, and the 
gain (or loss) in the SNR. 
The telescope used in this example is a 0.6m f/3.3 reflector, 
with a central obstruction of 0.2m. As a detector, a CCD 
with 24µm square pixels (corresponding to 2.5” at the focal 
length of 1.98m), a dark current of one electron per second 
per pixel, a readout noise of ten electrons per pixel, and a 
mean quantum efficiency of 70% over the visible and near 
infrared portion of the spectrum (400nm to 800nm) is used 
[2]. We assume a stellar object of 20mag as the target of the 
observation, the brightness of the sky background to be 
18mag per square arc second, and the FWHM of the stellar 
image to be 4”.  In that spectral range, we receive about 
4×1010 photons per second per square meter from a star of 
0mag [3]. A difference of 1mag corresponds to a factor of 2.5 
in the brightness, so there will be only 4×1010 ÷ 2.520, or 
about 440 photons per second per square meter from our 
target. The light collecting area of the 0.6m telescope is 
0.25m², so it will accumulate 11’000 photons in a 100 
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second exposure. With a quantum efficiency of 0.7, this will 
generate about 7’700 electrons in the CCD. 
Assuming that the PSF of the object can be described with 
equation 1, and that the peak brightness is located exactly at 
the centre of  one pixel, this pixel collects about 29% of the 
total light, or about 3’190 photons, which will generate 
2’233 electrons in that pixel. The Poisson noise of this 
signal is √2’233 ~ 47. 
In analogy to the stellar flux, we can estimate the flux from 
the sky background (18mag per square arc second) to be 
4×1010 ÷ 2.518, or about 2’748 photons per second per 
square meter. The telescope therefore collects about 68’700 
photons from each square arc second during the exposure. 
Each pixel covers 6.25 square arc seconds, and therefore, 
about 429’375 photons from the sky background will be 
collected during the exposure in each pixel. This will 
generate about 300’563 electrons, with a Poisson noise of  ~ 
548 electrons. 
During the exposure, the dark current will generate 100 
electrons in each pixel, and the dark noise is therefore 
√100 = 10. The readout adds further 10 noise electrons. 
Using equation 3, the total noise in the brightest pixel can 
be calculated by adding the object noise in the brightest 
pixel, the sky noise, the dark noise and the readout noise in 
quadrature, i.e. √(47² + 548² + 10² + 10²)  ~ 550. The Peak 
Signal Noise Ratio is now found to be 2’233 ÷ 550 ~ 4.1. 
Obviously, the 20mag object is only marginally detected in 
this example. 
Although this is a simplified calculation (e.g., no attempt to 
correct for atmospheric extinction was made, and no 
attention was given to the saturation of pixels, etc.), it is still 
a reasonable estimate. Some further telescope setups will be 
compared in the next chapters, and the results are 
compared. All calculations are summarized in table 1 in the 
Appendix. 
 
Exposure Time 
 
In the previous chapter, a star of 20mag is only marginally 
detected with a 0.6m f/3.3 telescope in a 100 second 
exposure. In the next example, the exposure time is 
extended to 600 seconds to increase the Signal Noise Ratio 
of the object. The calculation, which is summarized as 
example 2 in table 1 in the Appendix, shows that the SNR 
of the brightest pixels increases from 4.1 to 10.0. It has been 
noted previously that increasing the exposure time by a 
factor of n will raise the SNR by a factor of √n. In this 
example, the exposure time has been increased by a factor 
of 6, and the SNR was raised by a factor of √6 ~ 2.45.  
The limiting magnitude of an image can be defined by the 
brightness of the stars reaching some minimal SNR, for 
example, 3.0. A factor of 2.5 in brightness corresponds to 
one magnitude, which closely matches the increase in SNR 
due to the longer exposure. To increase the limiting 
magnitude by one full magnitude, the exposure time would 
have to be extended by a factor of 6.25, i.e., to 625 seconds. 
Pushing the limiting magnitude down by one more 
magnitude, another increase by a factor of 6.25 would be 
necessary: the exposure time would increase to about 3900 
seconds, or 65 minutes (figure 3). 
 

 
Figure 3: Relative exposure time required for increasing 

the limiting magnitude. 
 
Telescope Aperture 
 
In the next example, we will expand the telescope aperture 
from 0.6m (as used in the previous examples) to 1.5m, with 
a central obstruction of 0.5m in diameter and a focal length 
of 7m. For the environment (sky background, seeing) and 
the detector, the same values as in the previous examples 
are used, and a exposure time of 100 second (as in example 
1) assumed. The result of the calculation, which  is 
summarized as example 3 in table 1 in the Appendix, is 
somewhat surprising: Although the 1.5m telescope has 
6.25 times more light collecting area than the 0.6m 
instrument, the Peak SNR is now only 3.4. Compared to 
the Peak SNR of 4.1 that was found for the 100 second 
integration with the 0.6m telescope, this is a loss of ~0.2mag 
in limiting magnitude. 
How can this be? Due to the long focal length of the 
telescope, each pixel now covers only 0.71” × 0.71”. 
Compared to the 0.6m telescope from the previous 
examples (pixel  size 2.5” × 2.5”), this is only 8% of the 
area. By combining the increased light collecting power, 
and the smaller pixel scale, we find that each pixel receives 
only about 6.25 × 0.08 ≈ 0.5 times the light collected in 
one pixel of the CCD by the smaller telescope. As both the 
light from the object and from the sky background (the 
dominant source of noise in these examples) drop by the 
factor of 0.5, the SNR should decrease approximately by a 
factor of 0.5 ÷ √0.5 ~ 0.7. The true factor found by 
comparing the SNR calculated in examples 1 and 3 is only 
about 0.8, because the PSF is a non-linear function 
(equation 1), concentrating more light in the centre of the 
pixel than in the outer regions that were lost due to the 
smaller angular size of the pixels in that example.  
Does this mean that it makes no sense to use larger 
telescopes? Of course not! Apparently, the problem is 
related to the pixel scale, so pixel binning might be of 
some help: By using 2 × 2 binning (example 4), a Peak 
SNR of  6.4 is obtained, which corresponds to an increase 
in limiting magnitude of about 0.5mag as compared to the 
0.6m telescope in example 1, or of 0.7mag as compared to 
the 1.5m telescope with the CCD used without binning 
(example 3). 
Scaling the FWHM from 4” to 2” (by improving the 
telescope optics, the focusing, the mechanics or the seeing,  
if possible in some way) would be even better than 
binning: The peak SNR would grow to 12.7, and the gain 
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in limiting magnitude is about 1.2mag, as compared to 
example 1, or 1.4mag as compared to example 3. 
 
Pixel Size and Sampling 
 
Apparently, the relative size of the pixel to the FWHM of 
the stellar images is an important factor in obtaining the 
highest possible SNR. By performing calculations similar to 
the SNR estimates in the previous chapters, it can be shown 
that the highest Peak SNR is obtained when the pixels are 
about 1.2 × FWHM in size (figure 4). 
 

 
Figure 4: Variation of peak SNR for various pixel scales. 

The pixel size is measured in units of FWHM. 
 
With such large pixels, most of the photons are collected by 
the single pixel on which the PSF of the stellar image is 
centred, whilst only the fainter, noisy “wings” of the PSF 
fall on the neighbouring pixels, resulting in a high SNR. 
However, with almost all the light concentrated in a single 
pixel, it would be very difficult to distinguish real objects 
from image artefacts (like hot pixels or cosmic ray strikes), 
and it is impossible to calculate the precise position of the 
object to sub-pixel accuracy. 
To retain the information of the objects on the CCD image, 
the scale must be chosen so that the FWHM of stellar 
sources spans at least 1.5 to 2 pixels [4]. This scale is called 
“critical sampling”, as it preserves just enough information 
that the original PSF can be restored by some software 
analysing the image. With even larger pixels (i.e., less than 
1.5 pixels per FWHM), the PSF can not be restored with 
sufficient precision, and astrometric or photometric data 
reduction is inaccurate, or not possible at all. This situation 
is called “undersampling”. In the other extreme 
(“oversampling”) the light of the object is spread over many 
pixels: Although the PSF of stellar objects can be restored 
with high precision in this case, the SNR is decreased 
(figure 5). 
Critically sampled images will give the highest SNR and 
deepest limiting magnitude possible with a given equipment 
in a certain exposure time, without loosing  important 
information contained in the image. For applications that 
demand the highest possible astrometric or photometric 
precision, one might consider some oversampling. The 
same is true for “pretty pictures”, as stars on critically 
sampled images look rather blocky. 
 

 
Figure 5: Undersampled (left), critically sampled (center) 
and oversampled (right) stellar images (top row), and the 

PSF fitted to the image data (bottom row). 
 

 
Error Estimates 
 
Fitting a PSF profile to a faint, noisy detection is naturally 
less precise than for bright stellar images with a high SNR 
(figure 6). Position and brightness calculated for faint 
detections are therefore expected to be less precise than for 
bright objects. 
 

 
Figure 6: Gaussian PSF fitted to a faint (Peak SNR ~4) 

and a bright (Peak SNR ~100) stellar image. 
 
The fractional uncertainty of the total flux is simply the 
reciprocal value of the Signal to Noise Ratio, 1 ÷ SNR 
(sometimes also called the Noise to Signal Ration). By 
converting this uncertainty to magnitudes, we get: 
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Here, σPHOT is the one-sigma random error estimated for 
the magnitude measured, and SNR is the total SNR of all 
pixels involved (e.g., within a synthetic aperture centred on 
the object). By modifying equation 5, we can find this 
value from: 
 

 ( )2
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SNR
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In this formula, S is the total integrated signal from the 
object in the measurement (i.e., within the aperture), and n 
is the number of pixels within the aperture. The other 
quantities are identical to equation 3. It should be noted 
that, as both S and n will change with the diameter of the 
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aperture, the total SNR varies with the diameter of the 
photometric aperture, so photometry can be optimised by 
choosing the appropriate aperture [5].  
 

 
Figure 7: The photometric error (in stellar magnitudes) 

expected for point-sources up to a SNR of 50. 
 
Figure 7 shows the expected uncertainty in the magnitude 
for point sources up to SNR 50, as calculated from equation 
6. Equation 6 only estimates the random error in 
photometry due to image noise. It does not account for any 
systematic errors (like differences in spectral sensitivity of 
the CCD and the colour band used in the star catalogue) that 
might affect absolute photometric results. 
 
Provided that the stellar images are properly sampled, the 
astrometric error can be estimated using this equation [6]: 
 

 
SNR

PSF
AST

σσ =  (8) 

 
Here, σAST is the estimated one-sigma error of the position 
of the object, σPSF the Gaussian sigma of the PSF (as in 
equation 1), and SNR is the Peak Signal to Noise Ratio of 
the object. Note that σAST will be expressed in the same 
units as σPSF (usually arc seconds), and that σPSF can be 
calculated from FWHM÷2.355.  
 

 
Figure 8: The astrometric error (in units of the FWHM) 

expected for point-sources up to a Peak SNR of 50. 
 
Figure 8 shows the expected uncertainty in the position (in 
units of FWHM) for point sources up to SNR 50, as 

calculated from equation 8. Again, equation 8 only 
estimates the random error in the stellar centroid due to 
image noise. It does not account for any systematic errors 
(introduced by the astrometric reference star catalogue, for 
example) that might affect absolute astrometric results. 
Returning to example 1, the astrometric one-sigma error 
expected for the point source with a Peak Signal to Noise 
Ratio of 4.1 and a FWHM of 4” can now be estimated to 
~0.4”, using equation 8. Adopting a photometric aperture 
with a diameter of 3 × FWHM (covering 18 pixels), a total 
Signal to Noise Ratio of about 3.3 is found by using 
equation 7. From equation 6, the photometric error is 
estimated to ~0.3mag.  
An astrometric error of  ~1” is acceptable, particularly if it 
is a observation of a minor planet with a uncertain orbital 
solution or a large sky-plane uncertainty (for example, as 
in the case of late follow-up or recovery observations). 
Observations of the light curve of a minor planet usually 
require a precision of 0.05mag or better, corresponding to a 
SNR of 20 or higher. Obviously, photometric observations 
are much more demanding than astrometry. 
 
Summary and Conclusions 
 
This paper first described the characteristics of a Gaussian 
Point Spread Function, and the sources of noise in the 
imaging system. A few examples, estimating the Signal to 
Noise Ratio obtained for faint point sources with various 
telescope setups, highlighted that environmental 
conditions, telescope equipment, and CCD detector must 
harmonise to operate at peak performance. Finally, the 
astrometric and photometric error expected when 
measuring faint point sources was estimated. 
Useful astrometric results can be obtained even for very 
faint targets at the limit of detection, particularly if the sky-
plane uncertainty for the object under observation is large. 
For photometric studies, a higher SNR is desirable. 
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Appendix 
 

 
Table 1: Summary of the SNR calculations mentioned in the text. Example 1 is described in some detail in the paper. Note that, 

for example 4, the pixel size listed in the table is not the physical size, but the site of the 2×2 binned pixel, and all other data 
refer to the binned pixel. 

 

Signal to Noise Ratio Estimation 
 Example 1 Example 2 Example 3 Example 4 Example 5 

Telescope 
Mirror Diameter 0.60 m 0.60 m 1.50 m 1.50 m 1.50 m 
Obstruction 0.20 m 0.20 m 0.50 m 0.50 m 0.50 m 
Light Collecting Area 0.25 m² 0.25 m² 1.57 m² 1.57 m² 1.57 m² 
Local Length 1.98 m 1.98 m 7.00 m 7.00 m 7.00 m 
Focal Ratio 3.30 3.30 4.67 4.67 4.67 

Detector 
Pixel Size 24 µm 24 µm 24 µm 48 µm 24 µm 
Pixel Scale 2.50 ”/Pixel 2.50 ”/Pixel 0.71 ”/Pixel 1.42 ”/Pixel 0.71 ”/Pixel 
Dark Current 1 e–/s/Pixel 1 e–/s/Pixel 1 e–/s/Pixel 4 e–/s/Pixel 1 e–/s/Pixel 
Readout Noise 10 e– 10 e– 10 e– 20 e– 10 e– 
Quantum Efficiency 70 % 70 % 70 % 70 % 70 % 
Integration Time 100 s 600 s 100 s 100 s 100 s 

Object and Sky 
Object Magnitude 20 mag 20 mag 20 mag 20 mag 20 mag 
Sky Background 18 mag/£” 18 mag/£” 18 mag/£” 19 mag/£” 19 mag/£” 
FWHM 4” 4” 4” 4” 2” 

SNR Calculation 
Object Flux 11'000 γ 66’000 γ 69’080 γ 69’080 γ 69’080 γ 
Object Signal 7’700 e– 46’200 e– 48’356 e– 48’356 e– 48’356 e– 
Share for central Pixel 0.29 0.29 0.027 0.104 0.104 
Object Flux in centr. Pixel 3’190 γ 19’140 γ 1’865 γ 7’184 γ 7’184 γ 
Object Signal in centr. Pixel 2’233 e– 13’394 e– 1’305 e–  5’029 e– 5’029 e– 
Object Noise in centr. Pixel 47 e– 116 e– 36 e–  71 e– 71 e– 
Background Flux 429’375 γ/pixel 2'576’250 γ/pixel 217’487 γ/pixel 869’948 γ/pixel 217’487 γ/pixel 
Background Signal 300’648 e–/pixel 1’803’375 e–/pixel 152’241 e–/pixel 608’964 e–/pixel 152’241 e–/pixel 
Background Noise 548 e–/pixel 1342 e–/pixel 390 e–/pixel 780 e–/pixel 390 e–/pixel 
Dark Current 100 e–/pixel 600 e–/pixel 100 e–/pixel 400 e–/pixel 100 e–/pixel 
Dark Noise 10 e–/pixel 25 e–/pixel 10 e–/pixel 20 e–/pixel 10 e–/pixel 
Noise in centr. Pixel 550 e– 1342 e– 392 e– 783 e– 397 e– 
Peak SNR 4.1 10.0 3.4 6.4 12.7 
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